المالة المالة المالة ELECTRICAL PROPULSION SYSTEMS

Roadmap Report

AEROSPACE TECHNOLOGY INSTITUTE

FZO-PPN-COM-0030

Published March 2022

CONTENTS

KEY & LIST OF ABBREVIATIONS

OVERVIEW: ELECTRICAL PROPULSION SYSTEMS
MASS BREAKDOWN
TECHNOLOGY INDICATORS
TECHNOLOGY STAIRCASE
ELECTRIC MOTOR ROADMAP
POWER ELECTRONICS ROADMAP
THERMAL MANAGEMENT (ELECTRICAL SYSTEMS) ROADMAP
RELATED FLYZERO FURTHER READING
ABOUT FLYZERO
ACKNOWLEDGEMENTS

Key

3

List of Abbreviations

CNT – Carbon Nanotube
EMI – Electro-Magnetic Interference
HMM – Hard Magnetic Material
LH ₂ – Liquid Hydrogen
MDO – Multi-Disciplinary (MD) Optimisation
NPC – Neutral Point Clamped
PEEK – Polyether Ether Ketone
PEM – Proton Exchange Membrane
PM – Permanent Magnet
SMM – Soft Magnetic Material
SPM – Surface Mount Permanent Magnet
TMS – Thermal Management System

Figure 1 – Technology has been assessed against the NASA Technology Readiness Level (TRL) scale

OVERVIEW: ELECTRICAL PROPULSION SYSTEMS

This roadmap and accompanying report recommends technologies to make electrical propulsion viable for zero emission flight.

FlyZero has identified liquid H₂ (LH₂) as the most viable energy source for a zero emission aircraft. The FlyZero team assessed a hydrogen fuel cell powered electrical propulsions system, identifying that the power density of the system would be the primary parameter to optimise. Initial assessment showed that an electrical propulsion system would be significantly heavier than a gas turbine equivalent; however, it was an unexplored area with significant potential for improvement.

The electrical propulsion system considered within FlyZero uses proton exchange membrane (PEM) fuel cells as the power source, electric motor driven propeller and all the associated conversion and distribution systems. For the scope of FlyZero, electric propulsion was evaluated on a regional concept due to the weight challenges mentioned above. However, as the technology is developed it can be utilised on bigger platforms.

An advantage of distributed propulsion and modularity of electrical propulsion system is the possibility of novel airframe design and reduction in propulsion requirement due to the inbuilt redundancy of the architecture.

Battery electric was considered in the initial phase of the project, however with a relatively poor energy density of batteries it was discounted as a viable solution to make an impact on the market segments FlyZero is targeting. However it is still a viable solution for the advanced air mobility market.

It was also estimated that an electrical propulsion system provides a superior fuel burn efficiency than an equivalent LH₂ gas turbine turboprop which might play a big role in the operating cost of a LH₂ powered fleet. Our current estimates show electrical propulsion system efficiency to be ~55-60% compared to a LH₂ gas turbine engine of ~44% (fuel-to-shaft).

This report covers the system level assessments, technology indicators and proposed development roadmaps for electrical propulsion system. Certain components such as fuel cell and associated balance of plant are covered in detail in their own roadmap report due to the level of importance.

OVERVIEW: ELECTRICAL PROPULSION SYSTEMS

An electrical propulsion system was evaluated for the FlyZero regional concept shown below. This concept showcases distributed propulsion with six motor driven propellers. The propulsion architecture is shown below from propeller to the fuel cell modules.

To maximise the advantage of distributed propulsion six independent electrical channels were chosen. Due to the modularity of electrical propulsion systems, splitting components into multiple channels did not incur a significant weight penalty. Instead it provided enhanced availability at the aircraft level. The additional redundancy also allowed for reducing the power requirements for single engine failure condition.

Although the regional concept required ~0.75 MW shaft power per propeller, the assessments performed by the team were scaled from 0.5 MW to 4 MW to understand scalability. No significant variation in system level power density or efficiency was observed within this range. To transmit power, 1 kV to 3 kV voltage levels were deemed essential. Below these levels the transmission became prohibitive due to resistive losses and the mass of the cables.

As well as improving the gravimetric power density of the system, thermal management was identified as a key area of optimisation. As the thermal management system (TMS) contributes a sizable proportion of the overall mass, improvement of efficiency of each of the components will be essential to improve the system performance.

Note for the remainder of the report the references to electrical propulsion system refers to all the components shown in the architecture above except the propeller.

MASS BREAKDOWN

The chart below shows the mass breakdown for the entire electrical propulsion system. It shows that the TMS is a big proportion of the overall system. This indicated that an improvement in overall system efficiency is paramount to reducing the mass of the system. The biggest user of the TMS is the fuel cell module. A method of improving the efficiency of fuel cells is to oversize them, therefore utilise them below the rated power. Though this improves the efficiency of the fuel cell module it increases the mass of the fuel cell. A study undertaken by FlyZero indicated that oversizing the fuel cell module by 25% actually provides a net reduction of mass at the electrical propulsion system level. The reduction in TMS mass due to increased efficiency of the fuel cell would be greater than the increase in fuel cell mass.

Furthermore, this improved efficiency would improve the fuel burn, hence reducing the fuel mass for a particular mission. However this wasn't analysed in depth within FlyZero.

TECHNOLOGY INDICATORS

		2026	2030	Ultimate Target 2050	
Electric motor	Power Density (kW/kg)	13	23	25	
Power electronics (Inverter)	Power Density (kW/kg)	22	40	60	
Power electronics (DC-DC)	Power Density (kW/kg)	15	40	60	
Fuel cell stack	Power Density (kW/kg)	7	9	16	
Thermal management system*	Power Density (kW/kg)	6	7	20	
Air-supply system*	Power Density (kW/kg)	1	1	3	
Electrical propulsion system	Power Density (kW/kg)	1.0-1.5	1.5-2.0	3.0-3.5	

*For thermal management system and air supply system the power used to calculate power density refers to amount of heat dissipated, and compression power required to support the system.

TECHNOLOGY STAIRCASE

The chart below shows the development of essential technologies, their potential insertion at specific points in time and the overall impact this could have on electrical propulsion system power density. The power density numbers need to be considered with opportunities of novel airframe designs, which are possible due to the flexibility of the electrical propulsion system. Though FlyZero hasn't explored designs such as blended wing body or wing mounted pods, it is a strong recommendation to evaluate these in conjunction with an electrical propulsion system.

The ultimate target refers to a step change in high temperature fuel cell technology and implementation of superconducting powertrain. However, there is significant uncertainty on the development timeline for these technologies.

Development timeline

Advanced Winding Arrangement

The method of packing coils in a motor also have a big impact on its performance. Randomly wound coils have a very low packing density for copper (40%). This results in higher proportion of insulation material hence lowering the overall thermal conductivity. To improve this two promising technologies are recommended, preformed coils and transposed coil packing. These allow much higher packing density (>70%) providing an improvement in thermal conductivity and overall mass of the motor.

3

ELECTRIC MOTOR ROADMAP

2030

2022

Motor	Motor Topologies	Additive & Composite Manufacturing of Passive Components For an electric motor almost 50% of the mass is attributed to passive components. These components have been manufactured using traditional techniques,				
	Coil Winding and Magnet Wire	but using additive and composite manufacturing the mass of these passive components can be reduced significantly. Assessment has shown a reduction of more than 30%. Additive and composite manufacturing has been used actively in aerospace on safety critical structures and is considered proven and mature technology. However, its application on motor design has been limited. This has been identified as the single most mature technology to provide benefits as early as 2024. To leverage the additive technology further, it can be applied to creating magnetic material of desired shapes and sizes. This could help reduce the mass of magnets required to achieve the same flux density. This technology is still you now and significant work is required to develop method to 3D print with the				
Electric	Magnetic Material	desired magnetic properties.				
-	Manufacturing Improvements	Additive manufacturing of passive components				
		Composite manufacturing of passive components				
		Additive manufacturing of magnetic materials				

POWER ELECTRONICS ROADMAP

FZO-PPN-COM-0030

2022

2030

High Voltage IGBT Based on the assessment within FlyZero it has become clear that multi-megawatt propulsion systems are required to commercialise electrical aircraft. As **Topology and** Integration a result there is a need to use voltage levels within 1-3 kV range. To achieve this efficiently in the short term there is a need for development of high voltage SiC semiconductor devices for aerospace application. **Power Electronics** High voltage-IGBT improved structure High voltage -MOSFET SiC 2 GaN / Ga₂O₂ MOSFET Power Modules Semiconductor Devices Semiconductor packaging improvements 3 **Packaging & Manufacturing** Large scale manufacturing One of the main constraints which prevents power density optimisation through high frequency operation is high power module 2 package design. This involves integration of various technologies of High Voltage (HV) **MOSFET Power Modules** different materials at each layer of packaging. The technologies for die DC System (1-3kV) GaN and Ga₂O₃ devices have shown great potential in the High attachment, encapsulation, substrate material and interconnections are frequency operation. In particular GaN has shown significant critical to maintain high frequency switching operation with minimum improvement in efficiency and heat dissipation when cooled to 75K, voltage overshoot and uniform current sharing across the semiconductor which might be achievable with cryogenic coolant now available on

board. Ga devices can be used in conjunction with superconducting motors to have a common cooling system and lower operating voltage. On the other hand, it can also be used on the proposed high voltage system when using a multilevel convertor topology. The voltage limitations of existing Gallium devices can be overcome by use of multilevel convertor topologies.

chips. Until recently the development has been primarily focused on Si devices, however further development is required to improve the packaging for SiC and GaN. Some of these developments will be covered by the automotive sector with the progress of EVs, however further development is needed to optimise the packaging for the performance level and operating environment required for aerospace application.

Though SiC and GaN/Ga₂O₃ have been manufactured and tested, reliable bulk manufacturing is still lagging behind. This makes their implementation prohibitively expensive. Further co-ordination with device manufactures is required to create a viable commercial strategy.

15

POWER ELECTRONICS ROADMAP

Key Essential Competitor Technology Development Development Mature

2022

Fault management for HVDC systems **Electro-Magnetic Interference (EMI) management Topology and** HV electrical power systems have a challenge mitigating faults With high frequency switching and high power levels managing the EMI is Integration such as arcing and partial discharge. To manage these faults one of another hurdle that needs to be overcome. The current standards for electrical the most critical technologies would be development of detection distribution on aircraft were developed for much lower levels of power. These **Power Electronics** and isolation of such events. standards appear to be conservative, however at the point of conception simulation tools to understand EMI weren't available. A significant amount of work has been done on researching these detection technologies; however the advancement of semiconductor devices, particularly in the increase in switching frequency does, It is important to recognise the need to develop simulation tools that help us make the detection more challenging. Applying technologies such as understand the susceptibility and emissions of HV systems. The outputs of Semiconductor travelling wave detection or detection impedance measurement will these assessments will assist in updating the standards that are suitable for Devices be crucial to realise a HVDC system for an electrical propulsion system. HV electrical systems suitable for electrical propulsion systems. 1 Fault management for HVDC systems High Voltage (HV) DC System (1-3kV) 2 Electro-Magnetic Interference (EMI) management

Novel thermo-conducting composite materials

The main area of the power electronics liquid cooling system development involves usage of novel materials and structures for cold plates, heat pipes and liquid cooling techniques. In the short-term development period, new composite thermoconducting materials should become available - for example, AlSiC, Dymalloy, E-Material, copper-tungsten, etc. These increase thermal conductivities and help reduce overall cooling system requirements.

Microchannel, Heat Pipes & Vapour Chambers

During the mid-term development period, more advanced material manufacturing technologies will be available. These will allow more precise shapes of cooling system components. This would improve heat dissipation and can be further improved with the design of micro-channels within the cold plates, as well as micro-fins within the baseplates. Also, heat pipe shapes can be optimised in wick forms, as well as fitted oscillation or pulsation to increase an overall liquid flow without involvement of moving parts.

RELATED FLYZERO FURTHER READING

The ATI FlyZero project developed its technology roadmaps through a combination of broad industry consultation and assessment of technologies by experts. Technology assessment was carried out both by the FlyZero team and by approximately 50 industrial and academic organisations that partnered with FlyZero to support delivery. During the project, FlyZero developed three concept aircraft and used this exercise to gain a deep understanding of requirements and challenges for systems and technologies, which have been reflected in the roadmaps. Further detail of these technologies and developments can be found in the following reports, available to download from **ati.org.uk**:

FlyZero Zero-Carbon Emission Aircraft Concepts Report Ref F7O-AIN-RFP-0007 Technology Roadmaps

Report Ref. FZO-IST-MAP-0012

Workforce to Deliver Liquid Hydrogen Powered Aircraft Report Ref. FZO-IST-PPL-0053

Hydrogen Aircraft

Roadmap Ref. FZO-PPN-MAP-0022

Roadmap Report Ref. FZO-PPN-COM-0023

Capability Report Ref. FZO-PPN-CAP-0068 **Electrical Propulsion System** Technical Report Ref. FZO-PPN-REP-0028

Roadmap Ref. FZO-PPN-MAP-0029

Roadmap Report Ref. FZO-PPN-COM-0030 Capability Report Ref. FZO-PPN-CAP-0070

Fuel Cells Technical Report

Ref. FZO-PPN-REP-0031 Roadmap Ref. FZO-PPN-MAP-0032 Roadmap Report Ref. FZO-PPN-COM-0033

Capability Report Ref. FZO-PPN-CAP-0071

Cryogenic Hydrogen Fuel System & Storage

Fuel System Technical Report Ref. FZO-PPN-REP-024

Fuel Storage Technical Report Ref. FZO-PPN-REP-025

Roadmap Ref. FZO-PPN-MAP-0026

Roadmap Report Ref. FZO-PPN-COM-0027

Capability Report Ref. FZO-PPN-CAP-0069

Cross-Cutting

ABOUT FLYZERO

Led by the Aerospace Technology Institute and backed by the UK government, FlyZero began in early 2021 as an intensive research project investigating zero-carbon emission commercial flight. This independent study has brought together experts from across the UK to assess the design challenges, manufacturing demands, operational requirements and market opportunity of potential zero-carbon emission aircraft concepts.

FlyZero has concluded that green liquid hydrogen is the most viable zero-carbon emission fuel with the potential to scale to larger aircraft utilising fuel cell, gas turbine and hybrid systems. This has guided the focus, conclusions and recommendations of the project.

This report forms part of a suite of FlyZero outputs which will help shape the future of global aviation with the intention of gearing up the UK to stand at the forefront of sustainable flight in design, manufacture, technology and skills for years to come. To discover more and download the FlyZero reports, visit **ati.org.uk**

ACKNOWLEDGEMENTS

Lead authors

Keval Mehta Electrical Powertrain Specialist

Co-authors

Dr. Wasim Bhatti Powertrain Lead. **Nigel Town** Industrial Supply Chain Architect FlyZero would like to acknowledge the support and expertise provided by the following individuals or organisations noting the conclusions shared in this report are those of the FlyZero project: University of Nottingham, Woodford Engineering Consultancy (WEC).

FlyZero contributing companies: Airbus, Belcan, Capgemini, easyJet, Eaton, GE Aviation, GKN Aerospace, High Value Manufacturing Catapult (MTC), Mott MacDonald, NATS, Reaction Engines, Rolls-Royce, Spirit AeroSystems.

These roadmaps have been developed with a view to accelerate zero-carbon technology development and maximise the potential future value for the UK. They are unconstrained by the availability of funding.

Department for Business, Energy & Industrial Strategy

FlyZero was funded by the Department for Business, Energy and Industrial Strategy.

Front cover image © ATI

Copyright 2022 ATI. Parts of this document may be accurately copied, reproduced or redistributed only if unedited, unaltered and clearly credited to the Aerospace Technology Institute and the document title specified. This excludes images for which permissions from the copyright holder must be obtained. Aerospace Technology Institute registered in England and Wales Company No. 08707779 with its registered office at Martell House, University Way, Cranfield MK43 0AL.

ELECTRICAL PROPULSION SYSTEMS

Roadmap Report

